If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y+3y^2-47=0
a = 3; b = 2; c = -47;
Δ = b2-4ac
Δ = 22-4·3·(-47)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{142}}{2*3}=\frac{-2-2\sqrt{142}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{142}}{2*3}=\frac{-2+2\sqrt{142}}{6} $
| 1/3x+2x-7=0 | | 28=-12+4a | | -3x+5x=20 | | 3y+134=180 | | 8x+5+4x+4+3x+9=180 | | 8.5x+400=72.25+20x | | −8=-12-4t | | 6x+1=6+2x | | (2Y+2)+(3y-9)=180 | | 2/x=5/x=1 | | 2x+13+15x+19=7x+92 | | 48=4x+8 | | 4x+1+3=0 | | 6+f=2f | | 2x=18+36° | | n2-8n+12=0 | | 3x+3-6=0 | | x^2-4x-33=-4 | | e2=0 | | 14-5x-8-x=3+15-12x-6 | | 75+12.50=100+10x | | 36y=12y | | K=100-4nn=60 | | 120+0.40x=80+0.80 | | 9x-4/9x+4=4/5 | | 2(b+6)=34 | | 2x^2+8=5x+5 | | X=14+3x | | 16t–10t=6 | | (1+i)(2+3i)=0 | | 5e+4=3e+6 | | 2t–t=6 |